If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-3x-150=0
a = 2; b = -3; c = -150;
Δ = b2-4ac
Δ = -32-4·2·(-150)
Δ = 1209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{1209}}{2*2}=\frac{3-\sqrt{1209}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{1209}}{2*2}=\frac{3+\sqrt{1209}}{4} $
| (180-6x-7)+2x+103-x=180 | | 4u=2u+16 | | 2(v3-8)=38 | | 3m^2-13-56=0 | | 173-6x+2x+103-x=180 | | 5g-2=180 | | 35x-12=23 | | 6-u=262 | | -10y-1=9y+8 | | x^2-9x-12=−4x−6 | | 19=j/3−-17 | | 4x-17=x/3+16 | | 21.1=4n-5 | | (2x−4)(6x−3)=0 | | 6x+3.4=4.3x+5.1 | | x=(x+7)=35 | | 4(4)^3x+8=40 | | b/3-11=-8 | | 7a-2=4a+10 | | 7z-3=3z-10 | | 8x+3=44 | | 20t=4(t+2) | | -1/2a=2/3 | | d2− -6=8 | | -8(x-5)=-8x+40 | | 2x-15=x+19 | | 4/12=z/15 | | 19-8v=-8(v-3) | | 1/2(5x-4)=3/4 | | 6x+27+12x-9=90 | | 0=r/2+-2 | | 2(4x+8=) |